在Azure虚拟机上搭建GPU PyTorch环境的完整指南

你好!欢迎来到本教程,我们将一步一步教你如何在Azure虚拟机上搭建一个强大的GPU PyTorch环境,以便进行深度学习任务。在这个教程中,我们将涵盖以下主题:

1. 引言

在深度学习和机器学习中,GPU是必不可少的工具,它可以大大加速训练过程。在Azure虚拟机上搭建GPU PyTorch环境可以让你利用云计算的强大性能来进行深度学习任务,而不必购买昂贵的硬件。

2. 想定的硬件和操作系统环境

在开始之前,让我们先了解一下我们的想定硬件和操作系统环境:

  • 虚拟机型号:Standard_NC4as_T4_v3
  • 操作系统:Ubuntu 20.04 x64 Gen2
  • GPU:NVIDIA Tesla T4
  • CUDA版本:11.6

请注意,本教程中的步骤是针对上述硬件和环境进行的,如果你的环境不同,可能需要做一些调整。

3. 使用之前检查GPU信息

在开始安装之前,让我们首先检查一下你的GPU信息,确保你的虚拟机中有NVIDIA GPU。

$ lspci | grep -i nvidia

如果一切正常,你应该会看到类似以下的输出:

0001:00:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

接下来,我们可以检查当前系统中是否已经安装了NVIDIA驱动和CUDA。

$ dpkg -l | grep nvidia
$ dpkg -l | grep cuda

如果已经安装了其他版本的驱动或CUDA,我们将在后面的步骤中进行卸载。

4. 卸载现有的CUDA和NVIDIA驱动

为了避免版本冲突,我们需要卸载当前系统中可能存在的CUDA和NVIDIA驱动。

$ sudo apt-get --purge remove nvidia-*
$ sudo apt-get --purge remove cuda-*

这将卸载系统中的所有NVIDIA驱动和CUDA版本。

5. 安装NVIDIA驱动

接下来,我们将安装适用于我们的GPU的NVIDIA驱动。首先,让我们查找适合的驱动版本。

$ sudo apt install ubuntu-drivers-common
$ sudo ubuntu-drivers devices

从输出中,找到标记为“recommended”的NVIDIA驱动版本,例如“nvidia-driver-525”,然后进行安装。

$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt update
$ sudo apt install nvidia-driver-525

完成安装后,重新启动虚拟机。

$ sudo reboot

重新登录后,你可以使用以下命令来验证NVIDIA驱动是否成功安装。

$ nvidia-smi

如果一切正常,你将看到与你的GPU相关的信息。

6. 安装CUDA

现在,让我们安装CUDA,这是深度学习中必不可少的库。首先,我们需要从NVIDIA官网获取适合我们的CUDA安装命令。选择正确的CUDA版本和操作系统,然后执行以下命令。

$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
$ sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
$ wget https://developer.download.nvidia.com/compute/cuda/11.6.0/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.0-510.39.01-1_amd64.deb
$ sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.0-510.39.01-1_amd64.deb
$ sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
$ sudo apt-get update
$ sudo apt-get -y install cuda-11-6

完成安装后,需要将CUDA的路径添加到环境变量中。编辑你的.bashrc文件并添加以下行:

export PATH="/usr/local/cuda/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda/lib64:$LD_LIBRARY_PATH"

然后使用以下命令使更改生效:

$ source ~/.bashrc

7. 安装cuDNN

cuDNN是一个用于深度学习的GPU加速库,让我们来安装它。首先,你需要从NVIDIA官方网站下载cuDNN的安装包。你需要注册并登录以获取下载权限。

下载完安装包后,将它传输到你的虚拟机上,然后执行以下步骤:

$ sudo dpkg -i cudnn-local-repo-ubuntu2004-8.7.0.84_1.0-1_amd64.deb
$ sudo cp /var/cudnn-local-repo-ubuntu2004-8.7.0.84/cudnn-local-A3837CDF-keyring.gpg /usr/share/keyrings/
$ cd /var/cudnn-local-repo-ubuntu2004-8.7.0.84/
$ sudo dpkg -i libcudnn8_8.7.0.84-1+cuda11.8_amd64.deb
$ sudo dpkg -i libcudnn8-dev_8.7.0.84-1+cuda11.8_amd64.deb
$ sudo dpkg -i libcudnn8-samples_8.7.0.84-1+cuda11.8_amd64.deb

请确保按照上述顺序执行所有

步骤,以防止出现错误。

8. 验证cuDNN

现在,让我们验证cuDNN是否已经成功安装。首先,重新启动你的虚拟机以确保所有更改生效。

$ sudo reboot

再次登录虚拟机并激活之前创建的conda环境(如果你使用的是conda)。

$ conda activate torch

接下来,运行Python并执行以下命令来验证cuDNN:

import torch
torch.cuda.is_available()  # 检查CUDA是否可用
torch.cuda.device_count()    # 查看可用的GPU数量

如果一切正常,你将看到CUDA可用,并且你的GPU数量。

9. 安装PyTorch

最后,让我们安装PyTorch,这是深度学习的核心库之一。你可以根据你的需求选择不同的PyTorch版本和安装命令。你可以在PyTorch官方网站上获取适合你的版本和命令。

执行以下命令来安装PyTorch(请注意,这是一个示例命令,你应该根据你的需求选择正确的版本):

$ pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

10. 结束语

恭喜你,你已经成功在Azure虚拟机上搭建了一个强大的GPU PyTorch环境!现在你可以开始进行深度学习任务了。请记住,本教程中的步骤是根据特定硬件和环境定制的,如果你的环境有所不同,可能需要做一些适应性调整。

希望这个教程对你有所帮助,祝你在深度学习的旅程中取得成功!

本文由作者 王大神 原创发布于 大神网的AI博客。

转载请注明作者:王大神

原文出处:在Azure虚拟机上搭建GPU PyTorch环境的完整指南

(0)
打赏 微信扫一扫 微信扫一扫
上一篇 2023年9月17日
下一篇 2023年9月17日

相关推荐

  • 解决”nvidiasmi未找到命令”问题:深入探讨NVIDIA驱动和nvidia-smi命令

    在数字时代,图形处理单元(GPU)的作用愈发重要。小明是一位数据科学家,他在一台装有NVIDIA显卡的计算机上进行深度学习研究。然而,有一天,当他尝试在终端中运行nvidia-smi命令来查看GPU的状态时,却遭遇了一个…

    2023年10月17日
    00
  • 如何在预算内配置一台适合深度学习的主机?

    本文将探讨如何在有限的预算内,配置一台适合初学者使用的深度学习主机。我们将比较各种硬件选项,并提供具体的配置建议,帮助读者在购买过程中做出明智的决策。 引言 在人工智能和机器学习领域,适当的硬件配置是…

    2024年5月5日
    00
  • Ubuntu20.04安装odoo15社区版,并开启ipv6访问

    在数字化时代,企业需要一个强大的工具来管理客户关系、销售、库存和其他各种业务流程。Odoo是一个功能丰富的开源企业资源计划(ERP)软件,它能够满足这些需求。然而,安装和配置Odoo可能对初学者来说有些复杂。今…

    2022年1月6日
    04
  • 基于2023年的顶级配置,打造AI和深度学习工作站

    在科技迅速发展的今天,AI及深度学习已经渗透到我们生活的方方面面。为了更好地迎合这个趋势,个人和企业都需要配备高效能的计算机硬件。今天,我们将带你一探2023年最佳的AI和深度学习工作站,帮助你找到最适合你…

    2023年9月10日
    00
  • 探秘xFormers:加速Transformer研究的利器

    xFormers是一款强大的工具,旨在加速Transformer模型的研究。这个工具提供了一系列可自定义的构建模块,无需编写繁琐的代码,让研究人员可以专注于模型的创新和改进。它不仅包含了最新的组件,还提供了高效的构建块…

    2023年9月25日
    00
  • 如何应对GPU暴增的GenAI时代:AMD跨越英伟达的CUDA软件护城河

    在生成式AI(GenAI)时代,GPU的重要性不可忽视。英伟达和AMD作为GPU市场的两大巨头,正展开激烈的角逐。本文将探讨GenAI时代下GPU的关键作用,以及AMD如何挑战英伟达的CUDA软件护城河。 背景 当我们讨论GenAI时,G…

    2023年10月10日
    00
  • CUDA:加速深度学习和科学计算的引擎

    在现代计算机科学和工程领域,深度学习、科学计算和图形处理等应用程序需要强大的计算能力来处理大规模数据和复杂的算法。然而,传统的中央处理单元(CPU)在某些情况下可能无法满足这些需求。这时,CUDA(Compute …

    2023年10月17日
    00
  • 如何在Ubuntu 20.04上关闭Fn功能:个性化笔记本功能定制

    作为一名使用Ubuntu 20.04的笔记本电脑用户,我曾经经历了一个让我颇为困扰的问题:Fn功能键。Fn功能键是一种常见于笔记本电脑上的功能,它们可以让您在按下其他键时执行不同的操作,例如调整音量、亮度或切换无线…

    2023年10月21日
    00
  • CNN特征提取与结果映射:深度解析与优化探讨

    引言 卷积神经网络(Convolutional Neural Network,CNN)在图像识别、自然语言处理、视频分析等领域广泛应用,其内部机制却常常被误解或遗漏。本文将深入解析CNN的特征提取与结果映射过程,并探讨优化策略。 卷积…

    2023年9月3日
    00
  • Colossal-AI:一种高效分布式 AI 模型训练方法

    随着人工智能技术的快速发展,训练大型AI模型的需求不断增加。然而,单个GPU的内存容量有限,这限制了模型的规模和性能。为了解决这个问题,出现了许多分布式训练方法,其中一种被称为Colossal-AI。Colossal-AI是一…

    2023年2月15日
    00